In Situ Room Compensation

Software Module of the KLIPPEL ANALYZER SYSTEM (Document Revision 1.0)

FEATURES

- Fast measurement in non-anechoic environments
- Simulates standard condition
- Compensation of room reflections
- Far Field data based on near-field testing
- Calibration of measurement rooms and test boxes
- Microphone correction curves

BENEFITS

- Accurate Distortion measurement in any environment (THD, IMD)
- Accurate transient measurement

DESCRIPTION

Most acoustic measurement of audio devices are performed at a single point (e.g. On-Axis in 1m). To determine accurate free field data, these standard tests are usually performed in an anechoic chamber.

Anechoic rooms have a high demand on space and costs. Anyway often these measurement room are insufficiently damped at low frequencies (below 100 Hz), what needs to be corrected.

An alternative is the measurement under so called simulated free field conditions e.g. by windowing the impulse response which isn’t applicable for low frequencies (below 500Hz).

The ISC module is using a new approach that corrects the influence of the measurement environment by applying a complex filter to the microphone signal. This enables an accurate acoustic measurement of the fundamental as well as distortion (THD, IMD) with any stimulus (steady state, transient) in any environment (workshop, office).

Article number

2520-030

CONTENT

1 Overview ... 3
2 Applications.. 5
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>8</td>
</tr>
<tr>
<td>Output</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>
1 Overview

1.1 Principle

Based on the In Situ Test measurement (e.g. ground floor in workshop) and a Reference measurement (e.g. NFS, anechoic, near field) the ISC module calculates a compensation function.

After this initial calibration of the setup, multiple measurement with different stimuli can be performed. The room reflection are compensated in time domain by applying this compensation filter directly to microphone signal. Thereby, this technique can be used for any stimulus and analysis, acquiring accurate measurements of nonlinear distortion and transient responses.

1.2 Compensation Methods

Complete Compensation with Full Band Reference (FBR)

HOW IT WORKS?

- $H_{ref}(f,r_r)$
- $H_{test}(f,r_t)$
- $H_{C} = \frac{H_{ref}}{H_{test}}$

FEATURES
- compensates for different measurement points r_r and r_t
- compensation of room influence, position of the measurement points (e.g. near field effects)

LIMITS
- requires accurate reference response $H_{ref}(f,r_r)$ with sufficient resolution at all frequencies
- microphone positioning error affects the compensation function $H_{C}(f)$

APPLICATION
- measurement in small undamped room (e.g. office)
- Far field correction of near field measurements
- Comparison of measurements from different test boxes (e.g. EOL-Test)
In Situ Room Compensation

Overview

How it Works?

1. **Reference Measurement**
2. **In situ Test**
3. **Windowing**

Features
- Reference response $H_{ref}(f,r_r)$ with sufficient resolution at low frequencies only
- Compensation function $H_c(f)$ represents interaction between speaker and room
- Microphone positioning error has small influence on compensation function

Limits
- Windowing requires sufficient distance from reflective surfaces
- Measurement points r_r and r_t shall be identical

Application
- Measurement non-anechoic rooms (e.g. workshop, office)

Low Frequency Compensation (LFC)

How it Works?

- $H_{ref}(f,r_r)$
- $H_{test}(f,r_t)$

Features
- Requires accurate reference response $H_{ref}(f,r_r)$ with sufficient resolution at low frequencies only (below 1 kHz)
- Compensation function $H_c(f)$ is valid for a wide range of speakers
- Microphone positioning error has small influence on compensation function

Limits
- Requires good acoustic treatment of the measurement room for high frequencies (above 1 kHz)
- Measurement points r_r and r_t shall be identical

Application
- Measurement in small (bad) anechoic room
- Calculating a generic room correction curve for a fixed setup

1.3 Results
Room Correction Curve

Transfer function of complex compensation filter. This filter can be used to correct the setup for further acoustic measurements. (e.g. TRF, TBM, etc.)

Note: This filter is only valid for the current setup and needs to be recalculated when changing the Setup (e.g. changing position of speaker or microphone, measure in a different room)

1.4 Parameter

<table>
<thead>
<tr>
<th>Compensation Method</th>
<th>Selection of the compensation method according to section 1.2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Situ Measurement</td>
<td>The ISC imports data automatically from the selected TRF operation</td>
</tr>
<tr>
<td>Reference</td>
<td>Definition of Reference Curve. This curve can be imported via the Clipboard or by a direct operation link to either a TRF operation measured in free field or to a NFS Visualization operation.</td>
</tr>
<tr>
<td>Time Windowing (LFR only)</td>
<td>For the Complete Compensation with a low frequency reference curve (LFR) the ISC uses time windowing to extract the direct sound from the In Situ measurement at high frequencies. The length of this window is calculated automatically based on the measurement distance and the distance to the nearest room boundary.</td>
</tr>
<tr>
<td>Transfer Function Adjustments</td>
<td>When comparing a reference measurement with an In Situ measurement, there are usually small mismatches in the mechanical alignment of the measurement setup. These little mismatches like Gain, Delay, Polarity are checked automatically and can be adjusted to ensure valid compensation filters.</td>
</tr>
</tbody>
</table>

2 Applications

2.1 Harmonic Distortion measurement with chirp

When measuring the impulse response of an audio device with a sweep, the harmonic distortion of the nonlinear system can be separated in the time domain by windowing the impulse response. This particularity is caused by the frequency time mapping of the chirp.

Anyway, this separation technique requires short impulse responses. If the acoustic measurement is performed in a non-anechoic room the decay of the room can be easily...
longer than 100 ms. This makes a separation of the harmonics distortion almost impossible, because for example the decay of the 3rd harmonics can ring into the 2nd harmonics.

![Diagram](image)

Applying to the microphone signal a filter, which compensates for the room influence reduces the ringing of the impulse response strongly.

![Diagram](image)

Thus, the Farina processing can be applied and accurate harmonic distortion can be determined.
2.2 Burst Test (Maximum Peak SPL - ANSI/CEA2010)

The target of the ANSI/CEA 2010A burst is the measurement of the maximum peak SPL of a speaker. The burst is a short time (transient) excitation that uses a windowed sinusoidal tone with 6.5 periods.

The standard specifies a frequency range from 20 Hz to 63 Hz and the peak needs to be detected in the time signal of the measurement microphone. These requirements make a compensation filter for this standard measurement indispensable.

The following example shows a burst measurement at a room resonance. As shown in the picture the short burst is enough to excite a room resonance which rings almost 1s. When applying the compensation filter the resonance is compensated and the free field sound pressure output of the speaker can be determined.
3 Requirements

3.1 Hardware

Analyzer Klippel Analyzer 3 (KA3) or Distortion Analyzer 2 (DA2)
Hardware platform of Klippel R&D System.

Amplifier [optional] External amplifier to drive the device under test.
Note: The KA3 has an internal amplifier card, which can be used as well.

Microphone Measurement microphone (XLR or BNC) to capture the sound pressure of device under test.

3.2 Software

dB-Lab (>210.560) Project Management Software of the KLIPPEL R&D SYSTEM. Minimum version 210.560

Transfer Function Module (TRF) The Transfer function (TRF) is a dedicated PC software module for measurement of the transfer behavior of a loudspeaker.

3.3 Optional Software Modules

Near Field Scanner 3D (NFS) The Near Field Scanner (NFS) can be used to determine a very accurate free field reference curve measured in any non-anechoic environment.

4 Output

Summary Window The summary window lists all input parameters of the module, as well as the automatic adjustments and mismatches between the In Situ and Reference measurement. In addition warning and error will be propagated here.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Type</td>
<td>RCC</td>
<td></td>
<td>Room Correction Curve</td>
</tr>
<tr>
<td>Compensation Method</td>
<td>RCC</td>
<td></td>
<td>Complete Compensation</td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>Yes</td>
<td></td>
<td>If activated harmonic distortion is</td>
</tr>
<tr>
<td>Harm. Dist. Order</td>
<td>5</td>
<td></td>
<td>Maximum order of harmonic data</td>
</tr>
<tr>
<td>Cross Frequency Range</td>
<td>500 - 1 kHz</td>
<td>Hz</td>
<td>Frequency band to slice the low fi</td>
</tr>
<tr>
<td>In Situ - Measurement</td>
<td>2 TRF</td>
<td></td>
<td>Name of the In Situ measurement</td>
</tr>
<tr>
<td>Reference</td>
<td>In Situ</td>
<td></td>
<td>Source of Reference transfer function</td>
</tr>
<tr>
<td>Distance Speaker to Microphone</td>
<td>1</td>
<td>m</td>
<td>Distance between speaker and Mi</td>
</tr>
<tr>
<td>Distance Speaker to Wall</td>
<td>5</td>
<td>m</td>
<td>Distance between speaker and th</td>
</tr>
<tr>
<td>Length of Time Window</td>
<td>20.50</td>
<td>ms</td>
<td>Length of the automatic time window</td>
</tr>
<tr>
<td>Transfer Function Adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Mode</td>
<td>Automatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>-33.345</td>
<td>dB</td>
<td>Gain added to Reference transfer</td>
</tr>
<tr>
<td>Delay</td>
<td>.07</td>
<td>ms</td>
<td>Delay added to Reference transfer</td>
</tr>
<tr>
<td>Polarity</td>
<td>-</td>
<td></td>
<td>Parameter shows if polarity of Raf</td>
</tr>
<tr>
<td>Phase</td>
<td>- deg</td>
<td></td>
<td>Delay added to the reference tra</td>
</tr>
<tr>
<td>Transfer Function Mismatch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Mismatch</td>
<td>-</td>
<td>dB</td>
<td>Gain mismatch between Reference</td>
</tr>
<tr>
<td>Delay Mismatch</td>
<td>-</td>
<td>ms</td>
<td>Delay mismatch between Reference</td>
</tr>
<tr>
<td>Phase Mismatch</td>
<td>17.69 deg</td>
<td></td>
<td>Phase mismatch between Reference</td>
</tr>
</tbody>
</table>

Impulse Response Impulse response of the imported In Situ Measurement with the applied automatic time window for high frequencies. (only for LFR method)
Transfer Function

Transfer function of the In Situ and Reference measurements. These transfer functions are used to calculate the compensation filter.

5 References

5.1 Related Modules

[1] Transfer function (TRF), Specification S7, 2016 Klippel GmbH

5.2 Publications

Find explanations for symbols at:
http://www.klippel.de/know-how/literature.html

Last updated: April 18, 2019

Designs and specifications are subject to change without notice due to modifications or improvements.