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The rocking of the loudspeaker diaphragm is a severe problem in headphones, micro-speakers and other kinds of 

loudspeakers causing voice coil rubbing which limits the maximum acoustical output at low frequencies. The root 

causes of this problem are small irregularities in the circumferential distribution of the stiffness, mass and magnetic 

field in the gap. A dynamic model describing the mechanism governing rocking modes is presented and a suitable 

structure for the separation and quantification of the three root causes exciting the rocking modes is developed. The 

model is validated experimentally for the three root causes and the responses are discussed conforming a basic 

diagnostics analysis. 

 

1. INTRODUCTION 

Rocking modes are natural vibration patterns of the 

loudspeaker, producing undesired rotational vibrations. 

Loudspeakers drivers with substantial irregularities 

produced in the manufacturing/assembling process and 

drivers subjected to asymmetric acoustics loads exhibit 

this phenomena. This rocking behaviour becomes more 

critical in small drivers such as headphones or micro-

speakers, where small irregularities in the stiffness, mass 

and magnetic field distributions, can affect dramatically 

the dynamic behaviour of these tiny structures. Even 

when high precision in the production process and low 

tolerances in the assembly are reached, some of these 

drivers present substantial excitation of rocking modes. 

One of the most important problems associated is the 

rub&buzz effect which limits the acoustic output before 

the normal mechanical or thermal mechanisms do. Since 

some of the causes of the rocking modes are nonlinear 

like: Bl(x) and Kms(x), this problem can appear only at 

high amplitudes, for this reason, drivers that are very 

stable at low levels can become unstable at high operation 

levels.  

 

The detection and identification of this rocking behaviour 

is crucial in the loudspeaker development process, since 

it will reveal the root cause of these particular symptoms 

allowing the engineer to take the necessary actions to 

eliminate or mitigate instability problems.  

 

The main idea is to develop an optimal model that can 

explain the generation of rocking modes and that allows 

to quantify the magnitude and the direction of the 

mentioned problems. This information needs to be easy 

to interpret and should be close to the physical 

phenomena experienced by engineers and designers 

working daily on loudspeaker development and 

manufacturing. Since the natural modes are the simplest 

way to express how a structure vibrates, expressing the 

amount of excitation of those modes is a very intuitive 

approach that provides valuable information for 

understanding problems.    

 

This paper is distributed as follows: First the physical 

mechanisms and the consequences of each root cause are 

described. After that, the system of equations are 

presented, the separation of the different causes as 

excitation mechanisms are developed and the simplified 

model is derived. In chapter four the modal analysis and 

the projection of the root-causes moments is described. 

Finally a set of validation experiments is discussed.  

2. PHYSICAL MODEL 

2.1. Rigid body motion assumption 

The rocking mode behavior of a loudspeaker can be 

considered as a low frequency mechanism totally 

described by the equations of motion derived for the 

lumped parameter model [1] coupled to another set of 

equations describing the tilting angle around a 

determined rotation axis. In this context, only the 

suspension parts are deformed under the effect of applied 

forces and moments. This assumption is fulfilled by all 

kind of electro-dynamical transducers composed by a 

rigid diaphragm, voice coil and former attached to 

slightly softer suspension parts. In the case of micro-

speakers and headphones, the diaphragm and the 

surround are made of the same material and the 

diaphragm needs to be deformed to allow the rotational 

degree of freedom. In this special cases the diaphragm 

will be taken as the larger surface vibrating with some 

negligible deformation. The frequency range for the 

rocking mode analysis is valid only below the first 

breakup mode of the diaphragm. 



 

 

2.1.1. System of coordinates   

The selection of the system of coordinates to be used in 

the derivation of the equations of motion will determine 

the usefulness of the model for the separation of the root 

causes of rocking modes. In the model presented in [2], 

the system of equations is derived assuming that the pivot 

point of the rotations along x and y coincides exactly with 

the center of gravity of the driver. Based on this 

coordinate system, all the moments associated to a 

shifting of the center of gravity of the diaphragm around 

the pivot point are zero, in other words the equations are 

dynamically decoupled [3], as a consequence the causes 

due to mass problems cannot be independently extracted. 

Since the equations will describe exactly the same 

behaviour independent of the system of coordinates or 

variables used, by using the mentioned coordinates, all 

the physical causes will be attributed to a static coupling 

terms produced in the suspension parts.  

 

For performing accurate root-cause analysis of rocking 

modes including the quantification of problems 

associated to Mass, Stiffness and B-field distributions, 

the model presented in this paper is extended to include 

the dynamic and static couplings as well as the moments 

terms associated to the excitation force. 

 

Starting from the contributions made by MacLachlan in 

[4] and later by Bright in [2] and [5] the rocking mode 

model can be developed by using the equations of rigid 

body mechanics.  

 

Figure 1 State variables describing rocking mode of a 

loudspeaker.  

The complete behavior of a loudspeaker exhibiting 

rocking modes can be described by three states; one 

translational xcoil describing the position of the center of 

the coil along the z axis and two rotational τx and τy 

describing the tilting angles around the y and x axis 

respectively, see Figure 1. 

The mechanical mass Mms is assumed to be lumped at the 

center of gravity of the diaphragm C.G and the total 

stiffness Kms including viscoelastic effects and Rms 

mechanical resistance are associated to the suspension 

parts.  

2.1.2. Total equivalent moments   

The imperfections produced in the production process, 

such as inhomogeneous distribution of the material or 

thickness over the diaphragm, geometrical or material 

changes along the suspension parts and differences of the 

magnetic field in the gap usually are located in different 

angles and at different distances from the center of the 

driver. As they can be seen as a moments acting around 

an arbitrary rotation angle (coincident with the direction 

of the rocking modes), all its contributions can be 

collapsed to a one equivalent moment producing the 

same effect. The tilting angle produced by the actions of 

the moments around the rotation axis of the rocking mode 

is called τα. The graphical representation of this concept 

is depicted in Figure 2.   

The force fsym corresponds to a part of the total applied 

mechanical force coming from the motor that produces 

only displacement of the diaphragm in the z-direction 

(pure excitation of fundamental mode), is called 

symmetric force because it does not produces any tilting 

of the moving mass. The other moments are results of 

some asymmetrical forces acting on the system.   

The total moment produced by problems in the magnetic 

field µBlTα is located at some arbitrary direction at the 

distance where the voice coil former and the diaphragm 

are in contact. In the other hand, the total moment µkTα 

generated due to irregular stiffness distribution will 

appear at the contact points between the suspension parts 

and the moving mass. 



 

 

   

Figure 2 Separated total moments exciting a rocking 

mode   

The total moment contributing to the rocking mode due 

to a mass problem µmTα can be seen as the effect of a 

shifting of the center of gravity C.G of the moving mass 

with respect to the geometrical center. This moment can 

be generated as well by some excess of glue in the 

junctions with the suspension parts and is taken into 

account only if the origin of the system of coordinates is 

located at the geometrical center of the driver.  

2.2. Root causes and excitation terms 

In the previous sections, it has been stated that the 

rocking modes in loudspeakers will be activated only if 

some moments around the axis crossing the center of the 

driver exists. In other words, any kind of nonsymmetrical 

force acting on the diaphragm will cause a tilting 

vibration known as rocking mode. They can be generated 

by irregular mass and stiffness distribution on the moving 

parts (passive excitation) or from the imperfections in the 

Bl distribution in the gap (active excitation).    

2.2.1. Mass Unbalance  

This problem is related with the shifting of the center of 

gravity of the moving parts out of the geometrical center. 

It can happen due to non-uniform material distributions 

on the driver components, thickness variations, excess of 

gluing in a certain direction, etc. The mass difference Δm 

between two opposite regions of the loudspeaker, will 

produce a shifting of the center of gravity C.G which 

consequently generates a moment µm at a distance ε 

around the axis crossing the geometrical center which 

will produce a titling angle τm  as shown in Figure 3.  

   

Figure 3 Tilting generation due to a mass unbalance   

The equilibrium of forces and moments acting on a 

infinitesimal part of the diaphragm mass dm located at 

C.G are:  

( )

mmcoilms

mcoilm

xM

dmxf

t

te

####

####

D+=

+=ñ
 (1) 

( )

mccoilm

mcoilm

Ix

dmx

t

etem

####

####

+D=

+=ñ
 (2) 

Assuming that the distributed mass of the loudspeaker 

Mms=ʃdm is lumped at center of gravity C.G the 

parameter Δm=εMms quantifies the difference of mass 

between two extremes of the loudspeaker in the direction 

of the distance ε from the geometrical center of the 

moving assembly. The moment of inertia is defined as 

Ic= ε2Mms [3]. Two effects are produced here; a force fm 

accelerating the diaphragm up and down d2xcoil/dt2 and a 

moment µm acting around the center of the driver 

producing a tilting angle τm. Note that the two coordinates 

xcoil and τm are coupled through the parameter Δm.. If there 

is no shifting of the center of gravity ε=0, the moment 

exciting the tilting angle is zero and the only remaining 

force will produce a perfect transversal motion.      

The amplitude of this tilting angle will depend on the 

amount of shifting of the center of gravity produced by 

the irregular mass distribution. The mass problem is a 

dynamic process that becomes dominant above the 

fundamental resonance frequency of the loudspeaker 

where the voice coil acceleration is high. 

2.2.2.   Stiffness asymmetry  

Any kind of defect or irregularity which modifies locally 

the restoring force of the suspension along the peripheral 

lines where the diaphragm is attached, can be seen as a 

difference of the stiffness Δk between two opposite 

contact points. Note that the total stiffness distribution 

acting on xcoil should be equivalent to Kms.   



 

 

  

Figure 4 Tilting generation due to stiffness asymmetry  

Computing the forces and moments for the simplified 2D 

case shown in Figure 4:  

kcoilmskRkLk KxKfff t0+=+=  (3) 

kcoilk KxK tm t+= 0  (4) 

The forces fkL and fkR represent the distributed vertical 

component of the restoring force provided by the 

suspension parts. µkL and µkR the moments around the 

center of the driver produced by the stiffness. The 

parameter Kτ=Kmsl2 is called the rotational stiffness 

around the rotational axis and K0=KmslΔk, l is the distance 

from the center to the contact point with the surround. 

This irregularity will generate a total moment µk around 

the axis crossing the center of the driver producing a 

tilting τk.  

Note that if the suspension parts exhibit some kind of 

problem, its effect will be evidenced even if there is no 

movement of the driver. For this reason this kind of tilting 

generation can be called static and is mainly active below 

the fundamental resonance frequency 

2.2.3.   B-field inhomogeneity  

The force factor Bl determines the amount of mechanical 

force that a loudspeaker motor can produce from an 

applied current. This parameter depends locally on the 

amount of magnetic field B crossing the voice coil with 

length l. Several reasons can cause variations of the 

magnetic field along the gap, such as non-homogenous 

magnetization, non-constant gap width due to shifted 

positions of the iron parts, etc. The non-asymmetrical 

transduction factor ΔBl can produce substantial changes 

of the mechanical force generated at different angles on 

the voice coil producing a moment µBl around the rotation 

axis at a distance dcoil, contact point of the coil with the 

moving parts. The action of this moment will produce a 

tilting angle τBl of the voice coil as seen in Figure 5. 

 

Figure 5 Tilting generation due to B-field inhomogeneity  

The force and the moments produced by this problem are:  

BlifBl =  (5) 

coilBlBl idD=m  (6) 

This root cause is related to the input current of the 

loudspeaker driver and it will excite the rocking 

resonators actively depending on its position over the 

voice coil circumference and the mode shape. This is 

active broadband but presents a dip at the resonance 

frequency due to the decreasing of current flowing 

through the voice coil.   

3. ROCKING MODE MECHANISMS 

3.1. Electromechanical system 

By computing the equilibrium of forces acting in the z-

direction and the moments around the x and y axis and 

coupling the electrical part of the driver through the 

current i(t), the next set of motion equations can be 

derived: 
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where Mms, Rms and Kms corresponds to the mechanical 

parameters of the driver, the product Bl is the force factor 

and they can be measured by using the conventional 

techniques [6] or [1].  

 

The constant parameters Δmx and Δmy are the terms 

coupling the translational displacement with the two 

rotational vibrations and Δm
τ represents the coupling 



 

 

between the two rotational degree of freedom. These 

parameters are related to the position of center of gravity 

of the diaphragm and they are called dynamic couplings 

since they will be only active if there exists acceleration 

of the model states. Note that any mass problem present 

in the real driver will be coded by those parameters. 

The parameters Δkx, Δky and Δk
τ play the same role as in 

the mass matrix, but for the stiffness. Since they are 

directly multiplied by the states and not by some of its 

derivatives, they are called static couplings. Any kind of 

non-uniform distribution of the stiffness of the driver will 

be described by these terms. 

 

The moments µBlx and µBly exciting a tilting along the x 

and y axes are depending on the parameters ΔBlx and ΔBly 

containing the information about the irregular B-field 

distribution in the gap. 

 

The diagonal terms Icx,y, Rτx,y and Kτx,y are the mass 

moment of inertia, the mechanical damping of the 

rotational vibration and the rotational stiffness of the 

diaphragm about the x and y axes.  

Equation (7) can be transferred into Laplace domain as:  

)(2 sIss BKxCxMx =++  (8) 

where the state vector x = [Xcoil(s) Tx(s) Ty(s)]T and the 

matrices M , C and K  represent the mass, mechanical 

resistance and stiffness, respectively. The vector B 

represents the components of the electro-dynamical 

transduction factor.  

For circular drivers, it has been shown in [2] that the 

stiffness terms can be expressed analytically as Fourier 

series of sinusoidal functions around the angle in the 

circular coordinate called stiffness distribution functions. 

In the case of the model presented here, this approach 

needs to be generalized since this model is intended to be 

applied to loudspeakers with arbitrary shapes.    

The energy dissipation of the rotational (tilting) vibration 

is usually attributed to visco-thermal effects present in 

the gap and the mechanical resistance of the suspension. 

For simplicity, the damping matrix is chosen to be 

diagonal, neglecting coupling terms due to the velocity 

of the model states. 

3.2. Direct excitation and feedback sources 

The model described by Equation (7) is a fully coupled 

system of differential equations which is rather complex 

and difficult to interpret. A more understandable form 

can be obtained by separating the inertia and elasticity 

terms producing moments around the rotational axis of 

the diaphragm as feedback sources added to the direct 

excitation from the motor.  

Separating the diagonal terms M D and K D of the mass and 

stiffness matrices from the non-diagonal (coupling) terms 

M Δ and K Δ gives 

( ) xKxMBxKCM DD --=++ 22 sIss DD
 (9) 

It can be clearly seen that the two new terms subtracted 

from the direct source and multiplied by the state vector 

can be considered as feedback sources of the system 

conformed by the diagonal terms on the left side of (9). 

If the diagonal terms are grouped into a transfer function 

matrix Hτ and the excitation terms associated to mass and 

stiffness are called FΔm and FΔk the full coupled 

differential equation takes the form:    

kmBl DDD --= FFFxHt  (10) 

Equation (10) describes three different sources 

corresponding to the mass, stiffness and Bl root-causes, 

activating a set of independent (decoupled) second order 

systems. A schematic representation of the derived 

Equation (10) is presented in Figure 6. 

Hτ  x

U(s) FΔBl

-

-
M Δ  

K Δ  

s2

B 

FΔm

FΔk

FT

Root-causes
System 

properties Ze
-1 I(s)

Figure 6 Mass and stiffness problems as feedback 

sources and magnetic excitation as a direct term. 

 

The mechanisms governing rocking modes in 

loudspeaker diaphragms consist of a SIMO (single input 

multi output) system with an internal feedback structure 

(dominated by Xcoil) through terms associated with mass 

and stiffness irregular distributions, activating a set of 

three second order resonators. The Ze
-1 is the electrical 

impedance converting the input voltage U(s) into the 

current I(s). The 2nd-order differentiator s2 transforms the 

state vector into the acceleration. The terms associated 

with Bl inhomogeneities are the direct forces and 

moments depending on the input current I(s).  

From the physical perspective, the only way to excite the 

tilting angles of the diaphragm is by using a motor with 

some inhomogeneities in the magnetic field, these 

introduce energy directly on the resonators. In the case of 

the mass and stiffness sources, they do not contribute 

actively with the total energy applied to the driver, but 

they redistribute the energy, that is supposed to excite 



 

 

only the piston mode, into the other two tilting 

components. For this reason they appears as a feedback 

sources in Figure 6.   

Note that the total excitation vector FT is composed by 

the complex contributions of the translational and 

rotational states multiplied with the different root-causes 

terms. A detailed analysis is required to determine the 

relevant terms in practical diagnostics analysis.    

3.3. Detailed moment generation and root-
causes separation 

The aim of this section is to describe the detailed 

derivation of a set of equations equivalent to equation 

(10) to provide a more intuitive idea of the generation 

mechanisms of the rocking modes in loudspeakers, 

making transparent the relation between the physical 

causes and the symptoms observed in real drivers. In the 

same analysis it is possible to determine the important 

terms and to neglect those which do not contribute 

significantly on the practical interpretation and 

diagnostics.  

The separation of the diagonal and non-diagonal terms 

leads to the following equation:  
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The diagonal terms of the left side matrix are the inverse 

of the transfer functions between the output states of the 

model and the total input excitation of each one.  

The transfer function:  

msmsms

xcoil
KsRMs

sH
++

=
2

1
)(  

(12) 

is the ratio between the mechanical symmetrical force 

fsym=BlI(s) produced by the loudspeaker motor and the 

voice coil displacement Xcoil(s). The other two transfer 

functions:  

iici

i
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tt
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where iϵ{x,y} are the ratios between the tilting 

components Ti(s) and the total moments µi(s) activating 

them. This resonators are introduced here as auxiliary 

transfer functions which can describe the tilting 

oscillations of the diaphragm exactly coincident with the 

x-y directions of the coordinate system. They should not 

be confused with the rocking resonators associated to the 

dominant rocking mode and its orthogonal counterpart, 

which can be generated in any direction.  

The coupling terms s2Δmi and Δki determine the amount of  

interaction between the voice coil displacement and the 

tilting angles. These terms are dominant in practice. 

In the other hand the coupling terms s2Δm
τ and Δk

τ 

determine the interaction between the two rotational 

states. These terms are usually negligible in practice. 

Solving equation (11) the transversal displacement 

Xcoil(s) and the tilting angles Tx(s) and Ty(s) can be 

described by second-order resonators and  

 

)()()( sfsHsX Txcoilcoil =  (14) 

)()()( ssHs Txxx mt=T  (15) 

)()()( ssHs Tyxy mt=T  (16) 

the total transversal excitation force   
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and the total excitation moments in x and y directions: 
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Each excitation force and moment comprise three 

components corresponding to root causes: mass, stiffness 

or Bl.  

The vectors τ, xx and xy are called state sub-vectors and 

are defined as: 
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The vectors Δm, Δmx  ̱ and Δmy  ̱ represent the mass 

parameters: 
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and the vectors Δk, Δkx  ̱ and Δky  ̱ contain the stiffness 

parameters: 



 

 

ý
ü
û

í
ì
ë

D

D
=

ky

kx

kȹ
 

ý
ü
û

í
ì
ë

D

D
=

k

kx

kx

t

tȹ
 

ý
ü
û

í
ì
ë

D

D
=

k

ky

ky

t

tȹ
 

A schematic representation of the generation of the 

transversal displacement Xcoil(s) is shown as a signal flow 

chart in Figure 7.  

Hxcoil Xcoil(s)

τ 

fm

fk

fT-

-

scalar product

Δm 

Δk 

BlI(s) fsym

s2

 

Figure 7 Generation of forces producing voice coil 

displacement due to coupling with tilting angles 

 

The mechanism is a feedback structure, which requires 

the prior computation of the tilting angles .̱ Physically 

the coupling forces fm and fk are dependent on the amount 

of tilting of the diaphragm. However, the forces fm and fk 

caused by the rocking modes are usually much smaller 

than the symmetrical force fsym and can be neglected for 

the modeling of the voice coil displacement Xcoil(s).  

Hτi Τi(s)
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µmi µTi

µki

I(s)

-

-

Root-causes

Δmi 
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Figure 8 Generation of tilting angles due to moments 

produced by mass, stiffness and Bl problems 

 

The signal flow chart in Figure 8 shows the generation of 

the tilting angles Ti(s). The moments µmi and µki 

representing mass and stiffness excitations depends on 

the states xi, dominated by Xcoil.   

The results obtained in Equation (18),  and  Equation (19) 

have a high diagnostic value since the root-causes of the 

rocking modes are clearly separated allowing an intuitive 

understanding of the problems presents in the 

loudspeakers and a clear interpretation of the parameters. 

This brings benefits for the system identification process 

which will be extended in the part 2 of the present paper.      

  

3.4. Simplified Model 

By applying the assumption that the feedback sources 

due to mass and stiffness problems in Figure 8 are 

dominated by Xcoil on the vector xi, and that the tilting 

angles τ are sufficiently small in Figure 7, the model 

reduces to the following feed forward structure: 
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Figure 9 Simplified feed forward model generating the 

tilting angle Ti(s) of the rocking mode 

 

Note that the block H’x produces the voice coil 

displacement and the current before distributing them in 

the network in charge of producing the moments that are 

going to excite the tilting resonators, it contains 

implicitly Hxcoil and Ze
-1. Due to its feed forward structure, 

this model is a much more powerful tool for analysis and 

diagnostics.  

 

Working in the x-y system of coordinates simplifies some 

steps for the modelling and for the system identification 

but is not suitable for analysis and data extraction. For 

this reason, the moments and the tilting produced by the 

root-causes need to be expressed in a coordinate system 

more related to the physics of the loudspeaker vibration. 

A more convenient alternative is the modal basis.  

    

4. MODAL ANALYSIS 

At low frequencies the diaphragm vibration can be 

described by the superposition of three natural modes; the 

piston and the two orthogonal rocking modes. From the 

dynamic analysis the mode shapes and resonance 

frequencies of the structure depend only on the elasticity 

and inertial properties [8]. 

 

The modal analysis is a powerful tool which allows to 

analyse complex vibrating systems as a set of simple 

harmonic oscillators with characteristics vibration 

patterns called Normal Modes [7]. In the analysis of 

rocking modes this is a convenient way to decouple the 

motion equation obtaining directly the rocking resonators 

and the mode shapes.   

4.1.   Rocking mode resonators HŬ1,2 

The first step to perform a modal analysis is to find the 

set of orthonormal basis in which the motion equation 

will be projected. Some drivers due to its suspension 

parts or particular acoustic loads present viscoelastic 

effects [9], [10] that limits slightly the performance of the 



 

 

modal analysis, since there is not simple way to decouple 

a system of equations with a frequency dependent 

stiffness matrix. In this context the viscoelastic terms will 

be neglected. 

Assuming that there are no forces or moments acting on 

the loudspeaker and considering only the inertia and 

elasticity terms, the following eigenvalue problem is 

posed: 

( ) 0ūIKM =--

nn

21 w  (20) 

Where the system eigenvalues ω2
n corresponds with the 

resonance frequencies of the fundamental mode fs and the 

two orthogonal rocking modes fα1,2 in Hz. I  states for the 

identity matrix. 

 
Piston Mode Φx 

 
Dominant Rocking Mode Φα1 

 
Orthogonal Rocking Mode Φα2 

Figure 10 Mode shapes of a rectangular loudspeaker 

The eigenvectors Φn are normalized with respect to the 

mass matrix and correspond to the mode shapes of the 

fundamental mode Φx (piston mode) and the rocking 

modes Φα1  and Φα2 as depicted in Figure 10. 

The eigenvectors Φn are orthogonal to each other and 

comprise three elements: 
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The tilting components τxi and τyi of the first and second 

rocking mode (i=1,2) describe the direction of the  

2,1arctan =
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yi

xi

i
t

t
a  (21) 

maximum tilting in the xy plane as shown in Figure 11.      



 

 

 

Figure 11 Rotation axes and moment projections 

Exploiting the orthogonality between the Eigenvectors 

the state vector x in Eq. (8) can be written as a modal 

expansion  

)(sūHx=  (22) 

with the modal matrix  

[ ]21 aa ūūūū x=  (23) 

comprising the orthogonal Eigenvectors Φn (mode 

shapes) and the transfer function matrix: 

[ ]Tx sHsHsHs )()()()( 21 aa=H  (24) 

comprising the mechanical transfer functions: 
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corresponding to the piston mode of the diaphragm and 

the transfer function of the two rocking modes: 
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shown in Figure 12. Since the mode shapes are 

normalized with respect to the mass matrix, the rocking 

resonators are totally described by only two parameters, 

the resonance frequency and the damping factor [11].   

 

Figure 12 The amplitude and phase response of the modal 

transfer functions Hx(s), Hα1(s) and Hα2(s)  

The resonance frequency ω0=2πf0 is the fundamental 

resonance of the driver and ωαn with n=1,2 are the 

resonance frequencies of the rocking modes. The modal 

damping factors η0 and ηαn are the mechanical losses of 

the modes excluding the electrical damping. 

Theoretically there are two rocking modes but in practice 

often only one of them is highly excited masking the 

effect of the other or they degenerate and can be seen as 

only one with one resonance frequency [12]. 

4.2. Moments exciting rocking modes 

The total moment µT exciting the rocking modes   
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(27) 

and the components µBl , µm and µk corresponding to the 

root causes mass, stiffness and force factor in Eq. (18) 

and (19) in Cartesian coordinates are transformed into the 

modal space to simplify the interpretation:  
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where the total moment µTα and its components are 

aligned with the direction of the modes by using the 

projection matrix: 
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based on the angles defined in Eq. (21) and shown in 

Figure 11.  The signal flow chart in Figure 13 illustrates 

the modeling of the rocking modes in the model space. 

 

Eigenvalue 

problem

Rocking 

Directions 
M

K

Modal Analysis

α2

ɤ
2
n

Φ

Root-

causes
Projection

µm

µk

µBl

U

α1

µTα1

µTα2

µBlα1

µmα1

µkα1

µBlα2

µmα2

µkα2

x and y components of 

moments

Physical excitation moments of 

rocking modes

Hα1

Hα2

Tα1

Tα2

 

Figure 13 Generation of total moments activating rocking modes 

5. DISCUSSION 

The proposed model is validated by conducting several 

experiments related with the three root causes that need 

to be identified and separated in practical diagnostics. 

The idea is to intentionally excite the rocking modes of 

the loudspeaker by modifying its mechanical and 

magnetic properties and to quantify its effects by means 

of the identification of the root-causes moments. The 

system identification scheme and the interpretation of the 

estimated parameters will be discussed in greater detail 

in part 2.   

For instance, to produce a substantial tilting angle of the 

diaphragm due to a mass unbalances, the center of gravity 

of the moving parts is shifted by placing a small mass on 

the surface. In the other hand, a stiffness asymmetry was 

created by perforating the surround along a determined 

area without changing the amount of mass displaced. The 

B-field inhomogeneity was generated by gluing two 

arrays of neodymium magnets with inverse polarity in 

opposite directions to the back plate. More details on the 

experimental setup will be given in the second part of this 

paper.  

  

  

Figure 14 Amplitude response of the fundamental and 

two rocking modes measured (dotted) and modeled 

(solid) on a transducer perturbed by an additional mass 

shifting the center of gravity.   



 

 

5.1. Dominant mass problem 

The experimental results and the fitted model of the 

rocking behavior due to a mass perturbation are shown in 

Figure 14. 

The moment µmα1 exciting the first mode generated by the 

additional mass is proportional to the acceleration which 

is the 2nd derivative of the transversal displacement Xcoil 

(see Figure 9) but the tilting angle Tα1 shown in Figure 14 

reveals an additional resonance peak at 300 Hz and an 

additional decay 12 dB per octave at higher frequency 

caused by the modal resonator with the transfer function 

Hα1(s).  

Note that the amplitude response of the tilting angle Τα2 

of the second mode  reveals other root causes activating 

the second resonator Hα2(s) having a resonance frequency 

at 350 Hz. The output parameters and moments 

computed in the identified system (solid line) will be 

explained in the second part of the paper. 

 

  

Figure 15 Amplitude response of the fundamental and 

two rocking modes measured (dotted) and modeled 

(solid) on a transducer perturbed by an asymmetrical 

distribution of the circumferential stiffness.   

5.2. Dominant stiffness problem 

The measured and modeled amplitude responses of the 

transversal displacement Xcoil and the tilting angles of the 

three modes of a transducer perturbed by an 

asymmetrical stiffness distribution are shown in Figure 

15. The moment µkα1 exciting the first mode generated by 

the stiffness is in accordance to Figure 9 proportional to 

the voice coil displacement Xcoil generating the low pass 

characteristic of the tilting angle Tα1(s). The modal 

resonator with the transfer function Hα1(s) generates the 

peak at 320 Hz and decay at higher frequencies. The 

amplitude response Tα2(s) of the second mode reveals a 

mass unbalance as found in the original transducer 

without any perturbation. 

  

Figure 16 Amplitude response of the fundamental and 

two rocking modes measured (dotted) and modeled 

(solid) on a transducer perturbed by an asymmetrical 

force factor distribution in the magnetic gap.   

5.3. Dominant Bl problem 

Figure 16 shows the amplitude responses of the first three 

modes of a transducer with an asymmetrical Bl 

distribution in the gap. Contrary to the root causes 

associated to mass and stiffness, the moment µBlα1 

generated by the force factor asymmetry has a relative 

flat response corresponding to the spectrum of the 

electrical current I(s) used in the excitation term in Figure 

9. The impedance maximum fundamental resonance 

frequency f0= 120 Hz causes a dip in the amplitude 

response of the tilting angle Tα1(s). The following modal 

resonator with the transfer function Hα1(s) generates the 

resonance peak and the decay above 300 Hz.  The 

frequency response of the 2nd rocking mode Tα2(s) reveals 

a small stiffness asymmetry found in the original 

transducer.  

 

6. CONCLUSIONS 

A new model has been presented describing the 

generation of the fundamental mode and the first two 

rocking modes. The quantification of the moments 



 

 

exciting the modal resonators reveal the root causes of 

the rocking modes which are caused by asymmetrical 

distributions of mass in the moving elements, stiffness in 

the suspension and electrodynamical force factor.  

The particular characteristics of each problem has been 

explained from the physical and from the system oriented 

modelling approach clarifying the symptoms associated 

to each problem.   

The transfer responses associated to mass, stiffness and 

Bl problems are discussed and the differences between 

the associated symptoms have been clearly separated. 

The model has been experimentally validated by the 

perturbation analysis of the three causes.   

Numerical modeling based on the theory developed in 

this paper is the basis for simulating the mechanical 

vibration but also for the root cause analysis of rocking 

modes and other kinds of diagnostics. The identification 

of the free model parameters based on measured data 

provided by laser scanning are the basis for performing 

practical diagnostics on a particular transducer. 
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