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ABSTRACT 

 A weak nonlinear plant can be linearized and will track 
an input signal if the plant is preceded by a nonlinear controller 
which approximates the inverse of the plant’s transfer function. 
Present techniques for adjusting the controller adaptively to the 
plant require an additional nonlinear adaptive filter to perform a 
separate system identification. Straightforward update algorithms 
can not directly update the filter  parameter in the controller 
because the transfer function of the plant might cause instabilities in 
the adaptive process. This problem is overcome by performing 
additional linear filtering to the nonlinear state vector and/or error 
signal. Novel filtered-A and filtered-E modifications of the 
stochastic gradient based methods are presented which are capable 
to update generic as well as special block-oriented nonlinear filter 
architectures. 
 
 
 
 

1. INTRODUCTION 
 
 Most techniques developed for the ínverse control of 
physical systems are based on a linear model for both the plant and 
the preceding controller. However, some real plants such as 
electromechanic and electroacoustic transducers (loudspeakers, 
actuators) are more precisely  modeled by a nonlinear system. The 
nonlinearities are relatively weak and the plant behaves at small 
amplitudes almost linear but can generate substantial nonlinear 
distortion of the output signal at higher amplitudes. Nonlinear signal 
distortion generated by loudspeaker, for example, affects the 
perceived sound qualitity and can impair the efficiency of active 
attenuation systems in professional applications. In an adaptive 
controller based on a linear filter the nonlinear distortion 
components increase the residual error and can generate a bias in 
the linear parameter estimates. 
 The nonlinearities of the plant can actively be 
compensated by using a nonlinear controller which approximates 
the inverse of the plant’s transfer function. The inverse 
preprocessing of the control signal can be realized with nonlinear 
filters based on a polynomial expansion [1] or on neural networks 
[2-3]. However, control systems based on such generic architectures 

can not be implemented on current digital signal processors (DSP) 
at low costs. Alternatively, block-oriented filter structures (such as 
the SM-model [4], Hammerstein-model [5], MMD-model [6]) are 
composed of both static nonlinear subsystems and dynamic linear 
subsystems. These architectures have a lower complexity and are 
very effective if the used filter structure is adequate for the 
nonlinear mechanism in the plant. If a priori information from 
physical modeling of the plant is available then it is even possible to 
derive special block-oriented filter structures with a minimal 
number of elements and free filter parameters, which are 
interpretable in a physical sense. Following this approach special 
nonlinear filter architectures have been derived from the woofer and 
horn loudspeaker modeling and have been implemented and tested 
as loudspeaker controllers [7 - 9]. 

Figure 1: Adaptive inverse control based on forward model identi-
fication. 

 After finding adequate filter structures the interest of re-
search is now focused on the optimal adjustment of the free control-
ler parameters to the particular plant. An adaptive parameter updat-
ing is preferable to an off-line adjustment because parameter varia-
tions of the plant can be compensated automatically. Straightfor-
ward adaptive algorithms available for the generic filter structures 
(polynomial filter [10] and neural network [3]), require an indirect 
adjustment of the nonlinear filter by performing an additional 
nonlinear system identificaton of the plant. The identification can be 
performed as a forward or an inverse modeling as shown in Fig. 1 
and 2, respectively. 
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 The additional model filter can be updated by straight-
forward methods (LMS, LS, RLS, backpropagation method) be-
cause this filter is located after or in parallel to the plant. In the for-
ward model identification in Fig. 1 the identified model parameters 
W have to be transformed into corresponding control parameters 
W’ and loaded into the non-adaptive control filter. The transforma-
tion can be accomplished by calculating the Volterra kernels from 
the parameter of the model filter first, inverting the kernel function 
as described in details in [11] and finally by synthesizing the pa-
rameters of the control filter from the inverted system function. Goa 
[1] simplified the transformation by performing a separate compen-
sation of the first-order system in the plant modeling.  
 The cumbersome transformation can completely be omit-
ted by using the inverse model identification as shown in Fig. 2. 
The identified inverse model parameters can directly be copied into 
the control filter preceding the plant. However, this advantage is 
paid by a biased parameter estimations under conditions of plant 
noise additive n(i).   
 Both approaches require an additional nonlinear filter 
which has the same complexity as the control filter. This increases 
the costs of DSP implementation and might be an obstacle for real 
time processing.  
 In this paper an alternative approach is presented. It al-
lows direct learning of the nonlinear filter preceding the plant with-
out separate nonlinear system identification. The corresponding 
block-diagram is shown in Fig. 3. A new update circuit has been 
developed which has a state vector A of the nonlinear control filter 
and the error signal e(t) as inputs and generates an updated parame-
ter vector W as output. Available update algorithms can not directly 
be applied here because the transfer function of the nonlinear plant 
might cause instable behavior of  the feedback path. 
 
 
 
 

2. BASIC FILTER AND PLANT MODELING 
 
 Following the Volterra series approach the plant is 
modeled as the sum of mth-order homogeneous power systems with 
m = 1, ..., M. All the higher-order subsystems (m > 1) are 
summarized in an here not further specified nonlinear subsystem N 
which is connected in parallel to the first-order system with the 
linear transfer function H1(z) as shown in Fig. 4. The output of the 

nonlinear subsystem p(i) represents the nonlinear “distortion” signal 
added to the linear output yl(i) of the system H1(z) and the plant 
noise n(i).  
 It is assumed that |p(i)| << |yl(i)|, thus the plant behaves as 
a “weakly” nonlinear system. This assumption is required to ensure 
that the mth-order distortion products with m = 2, ..., M generated in  
the plant can be compensated by a Mth-order polynomial filter and 
that the  ith-order distortion components with M < i  ≤  M2 which 
are newly generated by cascading two Mth-order polynomial 
systems are sufficiently small.  
 It is customary to assume that the plant noise n(i) is a 
zero-mean process and is uncorrelated with the linear signal yl(i), 
the nonlinear distortion components p(i) and the desired signal d(i). 
Likewise, we assume that the filter input x(i) and the desired 
response d(i) are single realizations of jointly wide-sense stationary 
stochastic processes, both with zero mean. 
 The nonlinear control filter preconnected to the plant is  
represented by a nonlinear state expander fed by the input signal 
x(i) and generating the state vector  

[ ]A( ) ( ) ( ) ( )i a i a i a iL
T= 0 1 K .  

This vector is weighted by the parameter vector  

[ ]W( ) ( ) ( ) ( )i w i w i w iL
T= 0 1 K  

and summarized by a following linear combiner to the filter output 
signal 

z i i iT( ) ( ) ( )= A W . 
 

This model is straightforward for polynomial filters where the 
nonlinear Volterra state expander generates the products of the 
delayed input samples x(i) in all combinations as described by 
Mathews [10]. 
 To apply this approach to the block-oriented filter 
structures it is necessary to develop the static nonlinear systems into 
a series expansion (e.g. power series) and to separate the linear 
parameters and the coefficients of the series expansions from the 
linear and nonlinear operations. That leads to a nonlinear state 
expander which comprises not only a tapped delay line and 
multipliers but can also contain linear filters and static nonlinear 
systems with constant parameters. 
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Figure 2:  Adaptive inverse control based on inverse model identi-
fication. 
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Figure 3: Linearization of loudspeakers based on adaptive inverse 
control. 



 
 

3. OPTIMAL PARAMETER ADJUSTMENT 
 
According to Fig. 4  the error signal at the discrete time i is  
 

[ ]e i d i y i d i i h n i p iT( ) ( ) ( ) ( ) ( ) * ( ) ( )= − = − − −A W 1

 
(1) 

where * denotes the convolution operator and it is understood that 
the Z -transform of  h1 is H1(z).  
 Contrary to the usual approach in adaptive filtering the 
cost function is defined here as the mean squared filtered error 
 

( )[ ]MSFE J E e i he≡ = ( ) * 2  (2) 

 where the Z-transform of he is a causal filter function 
He(z). Inserting Eq. (1) in Eq. (2) and differentiating the cost 
function with respect to each component of the weight vector yield 
 

∇ ≡ = + −( )J
J∂

∂ W
RW Z P2 2 2  

 where  

( )( )[ ]R A A= E i h h i h hi e i e
T( ) * * ( ) * * , 

( )( )[ ]P A= E d i h h i h hi e i e
T( ) * * ( ) * * , 

( )( )[ ]Z A= E p i h i h he i e
T( ) * ( ) * * . 

 
 To obtain the minimum mean-square error the parameter 
vector W is set at its optimal value W*, where the gradient is zero. 
Assuming that the correlation matrix R is nonsingular, the optimal 
weight vector is 
 

[ ]W R P Z* = −−1  (3) 

 
This result is the Wiener-Hopf equation for the special case of 
nonlinear inverse optimal filtering. The additional vector Z 
describes the crosscorrelation between the filtered nonlinear 
distortion signal p(i) and the filtered nonlinear state vector. This 
vector is almost independent on the parameter W as long as the 
control filter and the plant behave as weakly nonlinear systems.  

 

4. GRADIENT-BASED ADAPTATION 
 
 Although it is possible to solve the Wiener-Hopf equation 
(3) directly it is more practical in real time implementation to use an 
iterative method. Beginning with an initial value W(0) the next 
guess of the parameter vector is determined by the simple recursive 
relation 

[ ] [ ]W W W p Z RW( ) ( ) ( )) ( ) ( )i i J i i+ = + −∇ = + − −1 1
2
µ µ

 or 
( )( )[ ]W W A( ) ( ) ( ) * ( ) * *i i E e i h i h he e+ = +1 1µ (4) 

leading to the steepest-descent algorithm for this particular problem.  
 Omitting the expectation operator in Eq. (4) results to a 
stochastic gradient-based method  

( )( )[ ]W W A( ) ( ) ( ) * ( ) * *i i e i h i h he e+ = +1 1µ  (5) 

belonging to the family of the LMS-algorithms. In contrast to the 
straightforward gradient based algorithms the update Eqs. (4) and 
(5) require additional filtering of the signals prior to their 
multiplication. Whereas H1(z) corresponds with the first-order 
system of the plant, the filter function He(z) can be chosen 
arbitrarily. However, there are two configurations which are of 
special interest:  
 

4.1. Filtered-A LMS Algorithm 
 
 For He(z)=1 the additional filter in the error path can be 
omitted and the update equation reduces to 

( )[ ]W W A( ) ( ) ( ) ( ) * 'i i e i i h+ = +1 1µ  

related to the block diagram presented in Fig. 5. Each element of the 
nonlinear state vector requires a separate linear filter H1’(z) 
approximating the first-order system function H1(z). The adjustment 
of these filters is relatively uncritical but if  the responses H1’(z) and 
H1(z) deviate more than ±90o in phase the update circuit might 
become instable. Fig. 5 shows a straightforward way to identify the 
first-order system function of the weak nonlinear plant. 
 If the  state expander is completely linear (such as a 
tapped delay line in an FIR-filter) the filtering of the state vector A 
can be replaced by  single filtering of the input signal x(t) prior to 
the linear expansion which leads to the straightforward filtered-X 
LMS algorithm.  
 

4.2 Filtered-E LMS Algorithm 
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Figure 4: Basic modeling of the direct inverse control system. 
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Figure 5: Nonlinear inverse control with A-filtered LMS Algorithm. 



 
 The presented filtered-A LMS algorithm is impractical if 
the dimension of the state vector A is high and/or the filter function 
H1’(z) is very complex. In such cases it is advisable to omit 
additional filtering of the state vector and to use an additional filter 
He’(z) in the error path to hold the LMS algorithm stable. If the 
filter function  

H z z
H ze

K

( )
( )

=
−

1

 

 
is just the inverse of the first-order system function H1(z), including 
an additional time delay to make He(z) causal, the update algorithm 
reduces to  
 

( )[ ]W W A( ) ( ) ( ) * ( )i i e i h i Ke+ = + −1 µ  

 
 The corresponding block diagram is shown in Fig. 6. 
Besides the time delay of the nonlinear state vector there is only one 
additional filter in the error path required which performs an 
additional shaping of the error spectrum. The time delayed inverse 
of the first-order system function is identified with an additional 
linear adaptive filter in a straightforward configuration and instantly 
copied  to  the error filter. Plant noise n(i) might generate a bias in 
the estimate of  He(z) but that is acceptable for the error filter.  
 
 

5. CONCLUSION 
 
 The filtered-A and filtered-E LMS algorithms presented 
here allow direct updating of the nonlinear filter controlling the 
plant. Instead of performing a complete identification of the 
nonlinear plant in the accuracy required for the controller the new 
approach only needs a rough estimate of the plant’s transfer 
function to perform additional prefiltering of the nonlinear state 
vector and/or the error signal prior to their correlation. This 
technique ensures stability of the adaptive process as long as the 
plant behaves as a weak nonlinear system and the input-output 
relationship can be approximated by a linear system function. That 
is not a hindrance for practical applications because almost all 
generic filter architectures used in the control filter are bound to the 
same requirement to approximate the plant’s inverse and to provide 
sufficient compensation of the nonlinear distortion. 

  This technique is not limited to the gradient-
based algorithms presented in this paper but can also be applied to 
the recursive least-square algorithm. 
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Figure 6: Nonlinear inverse control with E-filtered LMS Algo-
rithm. 


